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Abstract. In this paper we demonstrate how to reduce the overhead
and delay of circuit establishment in the Tor anonymizing network by
using predistributed Diffie-Hellman values. We eliminate the use of RSA
encryption and decryption from circuit setup, and we reduce the num-
ber of DH exponentiations vs. the current Tor circuit setup protocol
while maintaining immediate forward secrecy. We also describe savings
that can be obtained by precomputing during idle cycles values that can
be determined before the protocol starts. We introduce the distinction
of eventual vs. immediate forward secrecy and present protocols that
illustrate the distinction. These protocols are even more efficient in com-
munication and computation than the one we primarily propose, but
they provide only eventual forward secrecy. We describe how to reduce
the overhead and the complexity of hidden server connections by using
our DH-values to implement valet nodes and eliminate the need for ren-
dezvous points as they exist today. We also discuss the security of the
new elements and an analysis of efficiency improvements.

1 Introduction

Since its public deployment in October 2003, the Tor [7] anonymizing network
has been a huge success. It currently consists of around 900 server nodes (onion
routers) scattered throughout all inhabited continents. With a weekly estimated
200.000+ users, and no down-time since launch, it is also the largest distributed
anonymizing network in use. There are other anonymizing networks: JAP [2] and
Freenet [5] are the most well-known implementations. In addition there exist
several commercial services offering anonymity through anonymizing proxies,
e.g., Relakks [21] and Anonymizer [1].

In this paper we describe new protocols for establishing circuits through Tor
and for accessing hidden services over Tor that are substantially more efficient
than those currently deployed. All the Tor modifications described in the paper
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were motivated by our intent to simplify and reduce the overhead of using hidden
services. However, as with the introduction of entry guards motivated by our
previous analysis of hidden services [17], we discovered that much of our work
applies to Tor circuits in general, not just those for accessing hidden services.
For clarity of exposition, we have thus separated our presentation into protocol
changes that apply to all Tor circuits and protocol changes that apply only to
hidden services.

Our generally applicable protocols provide (1) reduced overhead and greater
efficiency for the Tor network overall, (2) improved overhead and efficiency for
Tor client machines, (3) examples to refine and explicate the concept of forward
secrecy, and (4) most significantly, reduced load on individual server nodes. The
basic idea of onion routing was to make low-latency anonymous communication
feasible by adopting a circuit approach and limiting expensive public-key crypto
use to circuit setup. This has been largely successful and, for most circuits over
Tor, symmetric-key crypto has always dominated CPU consumption. Still, as
the network grew past 100 nodes in Spring 2005 it became necessary to modify
Tor to handle the public-key overhead by shifting the default rotation interval
for used-circuits from one minute to ten minutes. Because Tor is a volunteer
network, many of those who would like to contribute a node can only offer either
unused spare machines—which are often older, slower, and have less memory—
or machines that have other jobs to do, thus that can only spare computational
resources for Tor if the overhead is not too great. Therefore, our techniques
effectively lower the barrier to becoming a Tor node in significant ways and so
encourage the network to grow.

In addition to the reduced computational requirements for circuit establish-
ment, we describe reductions in message flows, both for basic circuit establish-
ment and to establish circuits for communication with hidden services, where
we use the new circuit construction and the valet nodes [18] extension to hidden
services to make the design simpler. The currently implemented hidden service
design [7] is complex and involves the building of four circuits collectively com-
prised of as many as twelve Tor server nodes—not including the service lookup,
the client or the hidden service node. The latency of connecting to hidden services
and interacting with them and the network load resulting from this complexity
may have contributed to the relatively low number of hidden services deployed to
date. There is also the effect simply that perceived complexity can imply reduced
expectation of security and performance. However, the lower priority placed on
maintaining and improving hidden services by the Tor developers, (not in gen-
eral but simply relative to other aspects of Tor) no doubt also plays a role, as
does the less immediate need for hidden services for the typical Tor user. Our
protocol eliminates the rendezvous server as it is used today, and we reduce the
number of involved nodes from twelve to six and the number of circuits from
four to two in the best case scenario. In the worst case, there are three circuits
comprised of nine nodes.

In section 2 we give a short overview of the history of onion routing and
circuit telescoping. In section 3 we present new methods of setting up anonymous



tunnels, both as a proposal for reducing Tor overhead and to explicate forward
secrecy, and in section 4 we look at some new methods of performing hidden
service connections. Section 5 discusses anonymity, security, and efficiency of
the new designs, and section 6 concludes.

2 Background

Onion routing is an approach to low-latency anonymous communication on pub-
lic networks. The first two generations of onion routing used data structures
comprised of layers of public-key encryptions to establish circuits and to dis-
tribute session keys to nodes along the circuit. The session keys were used, also
in a layered fashion, to encrypt and decrypt the data traveling back and forth
between the circuit initiator and responder. In the current generation of onion
routing, Tor, circuits are established by Diffie-Hellman (DH) key exchange with
each node in the circuit, each exchange being tunneled through the already es-
tablished circuit and encrypted with established session keys. This technique
has been called “telescoping” since its introduction in the Freedom Network [3].
Using DH provides (perfect)4 forward secrecy (FS), meaning that, because keys
are formed from exchanged messages rather than sent in encrypted form, once
the session is over and the keys discarded, an adversary who stored all previous
communication cannot decrypt it by somehow later obtaining a private key used
to encrypt a session key.

Interestingly the original onion routing system designers considered but aban-
doned in the spring of 1996 [11] the option of using public Diffie-Hellman values
to achieve efficiency gains in computation. Our intended design was to include
the public DH-values from the originator inside the layers of circuit building
onions, which were used in the first few generations of onion routing designs,
and then to combine these with public DH keys (that we assume are DH-values
used for generating keys). This is very similar to one of the protocols described
below. Our focus was not on FS but simply to be more computationally efficient.
We were certainly aware of FS and intentionally chose a protocol for securing
links between onion routers that provided it, but we only pursued it with respect
to outside attackers rather than against compromised network nodes as well. The
idea of using DH for basic circuit building was simply another dropped design
idea until work began on the Tor design, when it was picked up for the forward
secrecy it provided and for freedom from the need to store onions against replay.
The first description [10,19] and implementation of onion routing uses RSA pub-
lic keys for distributing circuit session keys and DH-established link encryption
between the server nodes. The current version of onion routing, Tor, uses both
a DH key exchange and an RSA encryption/decryption for each step on the
anonymizing tunnel setup. The computational advantages of using DH that we
contemplated in 1996 have lain dormant until now.

4 Forward secrecy was called ‘perfect forward secrecy’ when it was introduced and
often still is. We will follow the convention common in cryptologic literature of
referring to it simply as ‘forward secrecy’.



Hidden services [7,17] have also been a part of onion routing since 1997 [11]
and in their current form have been deployed on the public Tor network since
2004. They offer resistance to distributed DoS and other types of location ori-
ented attacks. Hidden services are hidden by the network in the sense that their
network locations cannot be found through access to the service, and this hid-
ing makes the services suitable for censorship resistance, such as for dissidents
or journalists publishing information accessible from anywhere. These location
hidden services have been shown to have potential vulnerabilities [16,17] some
of which have been addressed. Improvements to availability and QoS have been
added [18], although these have also made the protocol even more complex.

In this paper we present various DH-based protocols for more efficient es-
tablishment of circuits in an onion routing network and present both efficiency
improvements and simplifications to the existing hidden services protocol (in
addition to those from our more efficient circuit setup protocols).

3 Circuit-Building Protocol Description

We assume that the functionality of the existing Tor protocol is known to the
reader. Description of Tor circuit setup can be found in [6,7].

3.1 Overview

The central idea of all our protocols is to have certified ephemeral key exchange
values at every server node inside the anonymizing network that the client uses to
generate session keys for use with the nodes. These keys are used for symmetric
encryption inside the created circuits. In this way it is similar to the originally
contemplated use of DH in onion routing a decade ago. In all the protocols
we describe we save computational overhead because there are now about half
as many exponentiations per circuit established when compared to the existing
Tor circuit building protocol. We present four protocols. The first provides the
building blocks on which the others are based. We then consider issues of forward
secrecy and message replay. We illustrate these via a succession of protocols in
which communications efficiency and to some extent computational efficiency is
in each following protocol traded off for improvements in forward secrecy or re-
play prevention, culminating in a protocol with the computational improvements
we have already noted but that provides immediate forward secrecy. These ideas
will be explained below.

3.2 Protocol description

Our new protocols use an ElGamal key agreement [8], which is also widely known
as a half-certified Diffie-Hellman key exchange [15], to initialize the keys along
the circuit. Construction of DH keys is computationally expensive, so it should
happen as infrequently as possible. But new DH keys enable forward secrecy
when both parameters are discarded, so it should happen as often as possible. But



rotation can also require an update of the public (or user) accessible information,
so it should happen as infrequently as possible. Our presentation of the various
protocols below is in part designed to explore these apparently conflicting needs
and to illustrate ways to either make appropriate tradeoffs or to satisfy both
needs at once.

Unlike the current Tor network, no RSA key is used to encrypt client-server or
server-server communication. RSA keys are used only for the node to sign pub-
lic information about itself. Thus, server initialization and publishing of node
information is completed as in the current Tor implementation. (1) Every server
node has a permanent server key pair PSpub/priv as before. The private key is
used for signing server information, including the public key and all informa-
tion published in the directory service. (2) The server creates DH parameters
DHx,pub/priv that are to be used in forming circuits. The public values of are
made part of the information published in the directory service together with the
public server key. These public values need to be updated regularly. Following
current practice for the onion keys (circuit-building RSA keys) in the Tor net-
work, the default is to have a single server DH key good for one week, with the
previous week’s key being retained and usable to avoid synchronization problems
at the time of switching to a new key. (We could add a list of public-key-exchange
values valid in different periods of time, e.g. one new DH value every day, to the
published and signed list of information about this node. This would permit the
servers to have multiple values with different periods of validity to support both
circuit setup and to be used with valet nodes in the hidden service design. On
the other hand, this would clearly increase the directory overhead of Tor at a
time when directory size is seen as a main cost of running Tor and when Tor
developers are looking for ways to reduce the directory size and frequency of
updates.)

3.3 Setting up the circuit

There are two main uses of circuit constructions within Tor. (1) Setting up a
standard circuit, for example to reach an exit-node in order to retrieve informa-
tion from outside the anonymizing network. (2) Setting up a circuit to a hidden
service using special setup paths that protect the location of the accessed server
as well as the location of the client. The latter will be described in section 4.

We have in our examples described the plain Diffie-Hellman based ElGa-
mal key exchange protocol. An implementation could use an ECC (Elliptic
Curve Cryptography) version to reduce overhead in communication and comput-
ing time when deriving the session keys. Besides technical questions, the many
patents in this area would need to be investigated before recommending an ECC
version for Tor use. We will not discuss here the cryptographic differences or
advantages between these key exchange methods.

Plain circuit setup, using circuit setup onions The client, C, wants to
communicate through nodes X and Y to node Z, and from there to exit the
network to server S, just as in current Tor communication.



First the client wants to share an ephemeral encryption key with node X.
Every accessible node has signed and published their global DH-parameters,
DHx,pub, as described above.5 A discussion of the various methods to use for
distributing DH-parameters and public keys will not be addressed in this paper:
see [7,18] for this. Now, when the client wants to establish a communication
channel, it creates its own ephemeral DH value pair for use with each node, e.g.,
DHcx,priv/pub, for communication between C and X. It then sends the public
part to node X together with the additional information encrypted with the
newly constructed key.6

As noted above, this is essentially a half-certified ElGamal key agreement.
Now one can use the client’s contact with the first server node to tunnel infor-
mation to the second, and to the third, and so on.

The first protocol uses this new key exchange to set up each extension of
the tunnel quite similarly to the current handshake of Tor, except that we use
the public Diffie-Hellman value for identifying the server node. The connection
between the server node and its public DH value is established via the signature
on node information that the client must verify. (Alternatively it could be possi-
ble to use pairing-based cryptography to set up an identity-based Diffie-Hellman
scheme for circuit building obviating the need for signed certificates [13]. How-
ever, amongst other limitations, existing pairing-based schemes require a trusted
server to generate and distribute private keys to all the server nodes. A thresh-
old system can be used to reduce trust in a single entity for generating and
distributing these keys with a concomitant increase in overhead. We therefore
think it unlikely that any existing pairing-based scheme will be both practical
and adequately trustable for deployment on the public Tor network. Nonethe-
less, the potential advantages of an identity-based scheme are clear. Thus it is a
worthwhile research question to explore applying these schemes to onion routing
networks and similar systems. An identity-based scheme may also be useful for
similar but distinct existing applications or in other contexts.)

The setup packet to X contains

DHcx,pub, {CREATE , IDcx, data}Kcx

and the reply is similar to the current Tor key establishment “CREATED” mes-
sages, except that it can be encrypted with the common key Kxc because the

5 This value is calculated from their private DH-parameter, DHx,pub = gDHx,priv ,
signed and retrieved by C.

6 E.g. in plain Diffie-Hellman the key Kcx is found by using (DHcx,pub)
DHx,priv =

(DHx,pub)
DHcx,priv as key material. Note that this key material is for use only in

one circuit. If C were to build another circuit through X during the lifetime of
DHx,pub, it would use DHx,pub, but would generate a new DHcx,pub. Note also
that Kcx 6= (DHcx,pub)

DHx,priv : as is usual cryptographic practice, a key derivation
function (kdf) is needed to produce Kcx from (DHcx,pub)

DHx,priv , and a different
kdf is used for Kcx (for communication from C to X) than the kdf used for Kxc (for
communication from X to C).



key is established at both client and node once this setup message is processed.7

The same alteration to original Tor applies for the extension from X to Y when
sent from the client. The result will look something like

{IDcx,EXTEND ,DHcy,pub, {CREATE , IDcy, data}Kcy
}Kcx

(1)

with a reply that uses the new keys Kxc and Kyc
8. Similar extension is done from

Y to Z. We have only described the changes to the protocol. There exist check-
sums and key verification parameters in the current Tor protocol that will fit
easily in the same way in the new protocol. Notice that if we use DHcx,pub/priv =
DHcy,pub/priv 6= DHcz,pub/priv or DHcx,pub/priv 6= DHcy,pub/priv = DHcz,pub/priv

we save one DH initialization and will still have FS as long as the private value
is discarded after circuit use. The main reason for not having Z’s value equal to
X’s value is that X and Z should not be able to use the value as an index to
trivially tell if they are a part of the same circuit.

This first protocol will serve as the basic building block for those that follow,
which are all variants on it.

Fig. 1. Circuit setup, second protocol.

The second protocol creates the complete circuit by sending a single packet
to the first server node, X, propagating its way through Y to Z, as shown in
Fig. 1. The initial packet sent from C will look something like

DHcx,pub, {cmd, IDcx, Y,DHcy,pub, {cmd, IDcy, Z,DHcz,pub,

{cmd, IDcz, data}Kcz
}Kcy

}Kcx
(2)

The client (and intermediate nodes) will replace (actually “shift left”) the
data and add as much padding as they have removed in order to maintain con-
stant data length when stripping off headers. The data in Expression 2 can be

7 Note that since the client contributes only a fresh, ephemeral, and unauthenticated
value in this exchange, any concern about Key Compromise Impersonation attacks
simply do not apply to our protocols [4].

8 Recall Kyc 6= Kcy, but they are both derived from equal key exchange material.



parameters to the command for the last node of the circuit, e.g. connect to an ex-
ternal service or a simple “SETUP COMPLETE” to let the last node know that
it should send back a “SETUP OK”. The data field will always be followed by
termination information and random data adequate to keep a constant length.
This is the same technique to hide correlation between onion size and relative
position in a circuit used in the two generations of onion routing that preceded
Tor [10,20].

This general approach of (1) using just DH in exactly this way and (2)
abandoning RSA for circuit establishment was seriously considered [11] by the
developers of onion routing when moving from the generation 0 to the generation
1 system design, but ultimately RSA encryption in circuit setup has been used
in the code for all three generations of onion routing that have been deployed.

Preventing replay in circuit setup If someone were to obtain the onion in
Expression 2, he could replay it and cause the exact same circuit to be built
with the exact same keys. He could not read any traffic without breaking three
private and/or session keys. And, he could only replay it for the lifetime of onion
routers’ public DH keys. If any of them were to expire and the corresponding
private keys be discarded, the nodes would not be able to process the circuit. But
during that period, he could build the circuit repeatedly and possibly conduct
traffic attacks based on doing so. That is not possible in the current Tor circuit-
building protocol because each server contributes an ephemeral DH key to the
session keys each time a circuit is built. We now explore how to add this replay
preventability.

Following the structure of the first protocol above, we can have the “CRE-
ATED” message contain a random value generated by X. This can then be
combined with the session-key seed to form a new session key. (In current Tor,
the key material generated by the DH exponentiations would not be used directly
to encrypt messages. Rather a hash of that material with two different known
values is used for two different key derivation functions that produce keys for
encryption in each direction in the circuit. Similar kdfs are used to produce keys
for integrity checks, etc. [6]. As in most publications, our protocol description
glosses over this detail.)

This addition to the handshake can similarly be added to the “CREATED”
messages from Y and Z, resulting in a re-keying of the circuit even as it is being
built. Thus, while the original message from the client to X might be replayed,
subsequent messages through X will be encrypted under a different variant of
Kcx.

The third protocol adds this ephemeral feature to the above protocol designs
while reducing the total number of messages and still without requiring any
additional exponentiations over the first protocol.

If we were to simply add this node-generated randomness to the second pro-
tocol above, it would be possible to rekey the circuit with a single flow up and
single flow down the circuit. The full circuit establishment could not be replayed
because of this rekeying. But, it would not prevent replay of the onion and of



the resulting path laying all the way through the circuit. An attacker could still
replay the onion to do traffic analysis of the circuit establishment as long as the
servers’ DH keys remained usable.

The current Tor protocol contains a “CREATE FAST” option for the hand-
shake between the client and the first node. The link between them is already
encrypted using TLS (in a DH mode that insures that link encryptions have
forward secrecy). Thus, against a link eavesdropper, there is no advantage to
using a DH key exchange in the Tor handshake. Therefore both the client and
first node simply send each other symmetric key seeds which are combined using
XOR to form the Tor session key between them [6].9

We can use this technique, but extend it slightly to still reduce the number
of ping-pong exchanges used to establish a circuit. The first message from the
client is encrypted only with the TLS encryption of the link. It contains an extend
instruction and a random value from the client to be combined with a random
value contributed by the first node, X, to form their session key. Ignoring the
TLS encryption, it is very similar to the message in Expression 1 with one extra
field and one less layer of encryption.

EXTEND , random valuecx
,DHcy,pub, {CREATE , IDcy, data}Kcy

X forwards this (minus the fields random valuecx
and EXTEND) to Y . Y

responds with

{IDcy,CREATED , random valueyc
, data}Kyc

to which X attaches a random value and returns to the client

IDcx,EXTENDED , random valuexc
,

{IDcy,CREATED , random valueyc
, data}Kyc

The client then produces K ′

cx and K ′

xc from the parameters random valuecx

and random valuexc
, and the keys K ′

cy and K ′

yc are created from Kcy and
random valueyc

. These keys are used by C as session keys to communicate
with X and Y respectively for the remainder of the session. Using the session
keys the client sends an “EXTEND” message to Y , for extending to Z, just as
in the first protocol. The entire sequence of exchanges is depicted in Fig. 2.

We achieve a savings of two messages compared to the current circuit con-
struction by creating an onion from the client to Y as shown in Fig. 2, and

9 One might even go further and question the need for any encryption at all beyond
the TLS link encryption for communication between the client and the first node.
This would also allow the removal of one ping-pong exchange of handshake messages
while otherwise leaving the protocol intact. We will consider just such a reduction
next, but without eliminating the exchange of keys. The overhead of keeping these
keys is slight, especially if this does not require its own ping-pong of messages, and
it provides consistency with other protocol features, hence flexibility. We will thus
not pursue further in this paper completely removing the Tor session key between
the client and the first node.



then do an extend from Y to Z as above. The initial handshake with X is now
bundled in the onion sent to Y . And, even if an attacker obtained the onion
despite the TLS encryption on the client-X link, he could replay it for at most
two hops (and only during the time DHy,pub is valid). He cannot rebuild the
entire circuit to the final node because Y will not decrypt the extension request
unless it is encrypted under the new key. Note also that this use of a two-hop
onion will only allow X to identify its position in the circuit. The circuit will
be indistinguishable by Y or Z from one built only by telescoping. This is not a
factor in the typical case as most Tor circuits are built from clients not operating
on a Tor network node.

Fig. 2. Circuit setup, third protocol.

Another option that will prevent replay while using a single onion to establish
the circuit (as in the second protocol), is to use timestamps. If timestamps are
added to each layer of the onion, then honest nodes will not process them once
they have expired. To be resilient to clock skew, we probably need to have an
expiry interval of c. a half hour or hour rather than a few minutes. This however
raises the prospect that, e.g., the first node if compromised could replay the
onion as much as desired for that hour for whatever traffic-analysis value that
could have. Thus, we could have nodes store a checksum of a few bytes or so
for all onions that pass through within an hour. It can be quite short given the
small likelihood of collision, so neither storage nor lookup should be a problem
even for slow nodes without much memory. And, even if our checksum length is
so short that each node denies, e.g., ten valid circuits a day because of collisions,
the load on the network from circuit setup messages is still greatly reduced, as
is the expected setup time for establishing new circuits. Of course timestamps
can be added to the third protocol so that even replays just to Y can occur for
a shorter period.

Given that most clients are outside the known server node network, it will
be trivial for first nodes to recognize themselves as such. In fact, given the use
of entry guards in all Tor circuits [17], it is likely that all first nodes can identify
themselves with high probability for most circuits. Nonetheless, Tor clients on



Tor network nodes can avoid giving away even this little redundant information
by always building circuits using telescoping, even from the first to second nodes.
The use of onions (where recommended) saves one exchange of messages by
bundling the handshakes of the first and second nodes into one flow up and one
flow down the circuit. Note that the use of “CREATE FAST” to form circuits
from a client located on a Tor node using the current Tor protocol for similar
reasons faces the same issues.

The fourth protocol10 is useful in cases where forward secrecy is desired not
only a week after a circuit is closed but as soon as the circuit is closed. This
protocol provides immediate FS, whereas the others provide eventual FS. In
the fourth protocol the number and sequence of message exchanges is the same
as in the current Tor circuit establishment protocol (and the same as in the
first protocol). The number of exponentiations is much fewer however: eleven
vs. eighteen total per circuit, and six vs. nine for exponentiations that cannot
be precomputed and must be done during the protocol run. The others can be
done in advance during idle cycles. Another virtue of the protocol is that it is
compatible with changes that are being contemplated by the Tor developers11

to improve efficiency in what is stored in directories and how it is distributed.
Adding immediate FS to the first protocol in the obvious way of having nodes
send back an ephemeral DH public key (as opposed to a random value for mod-
ifying the existing session key as in the replay prevention of the third protocol)
would not have either of these advantages. If “CREATE FAST” can be used for
the first hop, then the total exponentiations drops from eleven to seven, of which
four must be done during the protocol run.

The first message from the client to X is similar to the first message of the
first protocol, except that nothing is encrypted (other than by link TLS) because
the client is not yet able to form any session key.

DHcx,pub,CREATE , IDcx,

X responds with

DHxc,pub, IDcx, {CREATED , data}Kxc

where, if rc is the client’s private ephemeral DH key and rx is X’s private
ephemeral DH key, and since

(DHcx,pub)
(DHx,priv+rx) = grc·(DHx,priv+rx) = gDHx,priv·rcgrx·rc =

(DHx,pub)
rc · (DHxc,pub)

rc = (DHx,pub · DHxc,pub)
rc

both C and X can use this as key material for the directional keys Kcx and Kxc.
The ephemeral key pair DHxc,pub/priv (with DHxc,priv = rx) is formed by X for
answering one Tor circuit establishment request, and the private component is
discarded as soon as it is used to form session keys. Note that the exponentiation

10 Thanks to Kim Philby for discussions on attempts to break the fourth protocol.
11 Private communication.



necessary to form the DH key pair does not need to be done during the protocol
run. Pairs can be formed and stored during idle cycles of the server. The only
exponentiation that must be done by X during the protocol is the one creating
key material (DHcx,pub)

(DHx,priv+rx). The client also has only one exponentiation
to do during the protocol (for each node in the circuit), namely (DHx,pub ·
DHxc,pub)

rc to form the same key material. The basic underlying point is one
that is well known to apply to DH protocols in general; nonetheless the current
version of Tor does not seem to take advantage of it.

Unlike the first protocol, authentication comes from X being the only one
who could encrypt the response rather than being the only one who could de-
crypt the challenge. In both cases only X possesses DHx,priv, and the client
knows that DHx,pub is X’s midterm DH key from the signed directory informa-
tion the client has. Thus, the client knows that X is the only one who could form
Kcx and Kxc besides the client, given normal assumptions. (What we have done
here is effectively a half-authenticated variant of some existing protocols for au-
thenticated DH key establishment that combine ephemeral and longer term DH
parameters, much as our ElGamal key agreement above was a half-authenticated
simplification of basic DH; although the exact relation between this protocol and
existing ones is not as clear. We will discuss this more in section 5.)

The client next sends the same “EXTEND” message to X for extending to Y

as in the first protocol, except that as immediately above, there is no encryption
of the message portion arriving at Y , other than the link encryption between X

and Y . Y responds just as X did above. The extension to Z is of the same form
as the extension to Y .

4 Hidden Service Protocol Description

Using the new circuit protocol in existing hidden service designs Hid-
den services can work almost as in the existing deployed design [7,17] only adapt-
ing to the new DH-based carrier in the circuits. It is also possible to incorpo-
rate so-called valet nodes [18], which protect the introduction points from being
identified by the client or anyone contacting a directory (or the directories them-
selves). A server sets up circuit connections to some introduction points and there
it listens for connections. Inside the contact information published or given to
the client the server adds a valet node extension to the means for reaching intro-
duction points, which is encrypted so that only the valet node knows where the
introduction point is. This is completed as described in the just-cited paper [18].

New Hidden Services setup One of the major problems with the existing
hidden services protocol is that it has become too complex. Both the deployed
hidden service design and the design using valet nodes require the building of
four circuits collectively comprised of as many as twelve Tor server nodes—
not including the service lookup, the client, or the hidden service node itself.
Extending design ideas from the proposed addition of valet nodes to protect



the introduction point [18], we here propose how to drastically reduce both
complexity and latency when connecting to a hidden service.

Connection between a client and a hidden service requires the setup of two
separate paths, each comprised of two mated Tor circuits. Why incur the large
overhead cost and delay of the second pair of circuits and connection made
through the rendezvous point? Rendezvous circuits provide at least three things
in the deployed hidden service design. (1) Introduction points are not responsible
for serving up the contents of the hidden server for which they are introduction
points. (2) Hidden servers (and thus the network) do not have to maintain open
circuits adequate to carry the maximum number of simultaneous connections
they might have. (3) None of the nodes carrying traffic between the client and
hidden server can recognize that they are carrying traffic for that hidden ser-
vice. In particular, blocking of an introduction point is neither as significant nor
therefore as desirable for an adversary wishing to deny service provided by the
hidden server.

The introduction of the valet nodes and contact information changed this,
as we now can have valet nodes protecting the introduction points. And contact
information is structured and served such that it requires some effort for either
valet nodes or introduction points to determine any hidden service for which
they are valet or introduction nodes respectively, even if the hidden service is
publicly listed. Since there are several of each, the value of determining this is
also limited and thus less likely to be pursued. We propose herein to further
change the introduction points into contact points where the service can either
(1) remain connected to the client rather than opening a new connection (Fig. 3),
or (2) set up a new connection to the node preceding the valet node, using this
as a rendezvous point (Fig. 4).

Fig. 3. New direct hidden service usage.

The first scenario from Fig. 3 follows simple setup. First the service opens
up connections to contact points (1) and tells them to listen for connections.
Then it locates the valet nodes and produces the contact information which is



somehow12 received by the client. The client tunnels out to the valet node and
transfers the valet ticket (2). The valet node unpacks the valet ticket, and extends
the tunnel to the ephemeral contact point (3). After using the valet ticket infor-
mation to authorize himself to the contact point, the contact point submits (4)
client information to the hidden service and connects the two circuits (5) for the
client and the hidden service talking directly. This is much faster but has some
implications that we will discuss in section 5.

Fig. 4. New direct hidden service using new rendezvous point.

The second scenario shown in Fig. 4 is optional and could e.g. be used when
connecting to a public hidden service. The first part of the service setup is
the same, but the client now first constructs a tunnel to the last node in front
of the valet node (2) and asks this node to listen for a potential connection
request. This node will now act as a potential rendezvous point for connections
back from the hidden service. Then the client extends to the valet node (3),
informs the contact point (4) which authorizes and submits the information to
the hidden service (5). The hidden service now determines whether to establish
the connection through the valet node as in the first scenario, or to contact the
new rendezvous point (6), and the client and the hidden service will have their
new communication channel (7).

Note that, as described, the two scenarios need not be considered two entirely
distinct protocols, but rather dynamic options. As observed earlier, the first
scenario addresses all of the contributions of using rendezvous points except
possibly for the overhead caused by the number of open circuits that a hidden
server must maintain to remain reachable. The network overhead can potentially
be reduced somewhat already by the suggested approach since circuits to the
contact points may be shorter because the valet node is also chosen by the hidden
server. As just observed the hidden service can dynamically choose whether to
communicate with the client through the already opened circuits or to open a

12 Could be off-line distribution, or via a directory service, DHT, etc.



new circuit to the offered rendezvous point. If the server has adequate reserve
contact circuit sockets and bandwidth, it can use the open circuits. If not, it
can use a new circuit to the rendezvous point, thus addressing the open circuits
issue, but doing so in a more efficient, dynamic way.

5 Discussion

5.1 Calculation reduction

We are ignoring the TLS encryption overhead as this is expected to be almost
like persistent connections and these will exist in all protocols in any case. We
will also ignore the symmetric encryption and the signature verifications as they
are the same in the two versions. The servers will have the additional production
of public DH values for authentication during every rotation period, which safely
can be ignored: we assume a default rotation of one per week.

The current version of Tor uses an RSA encrypted DH key exchange includ-
ing generation of DH public and private values when setting up a new circuit to
another node. The client uses an RSA encrypted DH key exchange including gen-
eration of DH public and private values. So the client makes an RSA-encryption
only once and adds a symmetric key if the DH key material is too long for one
RSA encryption (which it currently is). On the server node’s part there is the
decryption of the RSA data and add-on key, decryption of the DH key material,
and calculation of the keys13. Some of these calculations can be made on idle
circuits as noted in Table 1, but to our knowledge the current Tor protocol does
not take advantage of this: all calculations are done during the circuit establish-
ment protocol. The “CREATE FAST” option in the current version will result
in one less DH key exchange and one less RSA encryption/decryption.

Our new proposal The second protocol uses two DH value generations on the
client side (one for X and Y , and one for Z) but these can be made on idle
cycles, and since the server nodes’ DH values are known through the data from
a directory service, the client can complete the DH-key generation and calculate
the keys from this value. The client then encrypts the rest of the data with
the correct keys immediately. The client avoids the need for RSA encryption
for each node. In addition the nodes do not need to decrypt the RSA data.
They generates the keys directly. In addition the nodes need not send the initial
DH-value since the client uses its public DH values, as shown in Table 1. The

fourth protocol also has two initial exponentiations for the client, but for these
and for each of the circuit nodes the initial exponentiation can be done on
idle cycles, and these should therefore not count in comparing resources. The
client will also have to finalize all three temporary session keys by doing one
exponentiation each, and so will each of the circuit nodes. The “CREATE FAST”
option to the fourth protocol will result in one less DH key exchange. Unlike for

13 The DH-key is used to generate multiple keys for both encryption and MACs.



the second protocol, the client should use the same ephemeral public DH key
for Y and Z, to save an exponentiation from this reduction. So there will be
one initialization at the client, and none at X. As with the current Tor circuit
protocol, “CREATE FAST” should not be used if the circuit is initiated by a
client at a directory-listed Tor node.

Calculation type Current Current Second Fourth Fourth
in a three node circuit design FAST protocol protocol FAST

# of client RSA encryptions 3* 2* 0 0 0

# of nodes’ RSA decryptions 3 2 0 0 0

# of client DH-initializations 3* 2* 2* 2* 1*

# of nodes’ DH-initializations 3* 2* 0 3* 2*

# of client DH-finalizations 3 2 3 3 2

# of nodes’ DH-finalizations 3 2 3 3 2

Table 1. Number of exponentiations calculated during a single circuit setup.
*These initializations can be preconstructed on idle cycles.

5.2 Location Hidden Service effects

Using new DH circuits on the currently deployed hidden service design

As most circuits used by a client are premade to at least two hops out, there
would be no noticeable change to the user experience from the existing hidden
service design. But every circuit initialization will save the network the number
of exponentiations reflected in Table 1. And as we still have three new circuits
opened for every connection to a hidden service our new protocol reduces the
number of exponentiations in the network significantly.

Using new circuits and valet nodes If the new circuit setup were imple-
mented on the valet nodes design an estimated reduction in calculations would
be the same as in the existing functionality. Even if our protocol suggestion
supports and makes implementation of valet nodes easier, we will only see the
same amount of latency as in the original version. The only difference is that
the valet node can be based on a half-finished DH exchange and therefore may
also replace the RSA encryption of the valet token.

Using new circuits and direct communication One of the primary ob-
jections to using the old introduction points as contact points for the hidden
service, was that they might become liable for the content of the hidden ser-
vice. The introduction of the valet nodes changed this because the introduction
points no longer know which service they are assisting. But now the valet nodes
could identify themselves as associated with a service, if they had access to the
contact information for the hidden service. In addition, there could be many



valet nodes per introduction point, so we estimate that the potential problem of
being blocked by some valet node is not likely to be critical for the hidden ser-
vice. When we are talking about really hidden services that have private contact
information this is no issue at all.

By dynamically choosing whether to communicate through the contact and
valet circuits or open a new circuit to the rendezvous point (node before the
valet node in the valet circuit), the hidden server can more effectively manage
the network costs of connections to hidden services. Note that the incentives
of the hidden service align with those of the network in that it is incented to
only open new rendezvous circuits when utilization of its contact circuits is
relatively high. It would be interesting to investigate further whether the opti-
mal choice of resources in terms of number of open circuits to contact points
maintained vs. percentage of rendezvous circuits needed is the same for a given
hidden server and the network it is on. Clearly different principals in the system
also learn different things about the relative load on a hidden service from the
dynamic choice of whether to create a rendezvous circuit (e.g., the valet, con-
tact potential-rendezvous, and guard nodes). Whether there is any significant
information discernible from that (and whether it would be discernible in the
currently deployed hidden service design) is another interesting question worthy
of further study.

5.3 Security

Forward Secrecy and Replay Perhaps the largest security change from cur-
rent Tor implied by all the protocols except the fourth is that the FS they offer
is eventual rather than immediate. If DH keys for server nodes are used for a
week and kept for two, as would be consistent with existing directory usage in
Tor, then it can be as much as two weeks from the time a circuit is initiated
until the session keys in it attain FS; although, it will typically be much shorter.
This has two effects: first is the replayability of circuit setup for traffic analysis
purposes and the vulnerability of circuits to an adversary that attacks nodes
along a circuit during the lifetime of the DH keys to uncover traffic and data,
up to potentially everything sent over a circuit. Only a protocol with eventual
FS is vulnerable to replay once the circuit closes. However, as we showed via the
third protocol, it is possible for an eventual-FS protocol to be vulnerable to an
attack on servers or keys before the FS takes effect but still not be vulnerable
to replay. An adversary willing to go to the effort of such traffic analysis as can
be obtained from replay probably is determined enough to attack servers and
keys as well. This is the reason that we recommend the fourth protocol as a
new Tor circuit protocol rather than the third even if the third is resistant to
replay. Nonetheless, for the vast majority of Tor traffic, both of these concerns
are beyond a reasonable threat model.

Authentication and Protocol Security The current Tor circuit protocol
was designed to fit message constraints that “a single cell is too small to fit



both a public key and a signature” [7]. It was thus forced to use a nonstandard
design. For this reason, it was analyzed by the NRL protocol analyzer before
it was deployed and found to be secure in the Dolev-Yao model [7]. In 2005,
the Tor developers noticed and corrected that the cryptographic instantiation of
the protocol failed to properly perform adequate checks and left circuit building
subject to significant attacks. Analysis by Ian Goldberg [9] showed that the
corrected protocol instantiation was secure in the random oracle model. What
assurances do we have that the protocols we have presented are secure? At this
point we have only indications, which we now discuss.

Using DH, we do not have the message size issues of the current Tor circuit
protocol, but we have as yet performed neither formal analysis nor a crypto-
graphic proof of the security for any of our protocols. Nonetheless, all but the
fourth protocol are essentially ElGamal key exchange. This is a widely studied
and understood simple protocol for providing implicit one-sided authentication.
As such, these protocols are unlikely to have significant flaws. The fourth proto-
col combines long-term and ephemeral DH elements in a manner similar to many
protocols, but again for only one-sided authentication so that it is simpler. It
is in some ways like a simplification of the MQV protocol [14]. It has the overt
structure of MQV to authenticate the server node to the client and obviously
none of the structure authenticating the client to the server. Our protocol also
does not make use of the specialized group exponentiation that MQV uses. Like
ElGamal, MQV is also a well-studied protocol. Its original design was vulnerable
to attacks against properties that are not needed for our purposes and were later
corrected and led to its adoption as an IEEE standard[12]. Despite adoption as a
standard, MQV has not been proven secure either formally or cryptographically.
The only protocol in this group to have a security proof is the so-called Unified
Model (UM) protocol [4]. Adapting the UM protocol in a straightforward way
to our purposes would increase the number of exponentiations required vs. our
fourth protocol. While similarities to UM and other protocols is encouraging, we
intend to subject our protocols to more formal scrutiny in future work.

6 Conclusion

We have proposed a way to simplify circuit setup in the Tor anonymizing net-
work. We have explained how to use predistributed Diffie-Hellman values for
setting up session keys based on half-certified ElGamal key exchange. By using
this new setup for a circuit the client saves three RSA encryptions, and each of
the nodes in the circuit saves one RSA decryption in addition to the initialization
of a DH value. In addition we noted how both the current Tor circuit building
protocol and our new proposed protocols can benefit from precomputation of
much of the information needed for the protocols. This is perhaps especially
beneficial at the nodes rather than clients, where public-key overhead can be a
bottleneck. One of our protocols offers less calculation overhead, and incorpo-
rates immediate forward secrecy. Others provided even more substantial savings
in computation and in communication but only eventual FS. They also serve



to illustrate the distinctions between eventual FS, replay-resistant eventual FS,
and immediate FS.

We have also proposed two new hidden service protocols that uses valet
nodes to protect the introduction point, and therefore can eliminate the circuits
to external rendezvous points. As a result of this improvement the hidden ser-
vice protocol can now make more direct, lower-overhead connections to hidden
services without compromising on anonymity or security.
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for anonymous and unobservable Internet access. In H. Federrath, editor, Proceed-
ings of Designing Privacy Enhancing Technologies: Workshop on Design Issues in
Anonymity and Unobservability, pages 115–129. Springer-Verlag, LNCS 2009, July
2000.

3. Philippe Boucher, Adam Shostack, and Ian Goldberg. Freedom systems 2.0 archi-
tecture. White paper, Zero Knowledge Systems, Inc., December 2000.

4. Colin Boyd and Anish Mathuria. Protocols for Authentication and Key Establish-
ment. Springer-Verlag, 2003.

5. Ian Clarke, Oskar Sandberg, Brandon Wiley, and Theodore W. Hong. Freenet:
A distributed anonymous information storage and retrieval system. In Proceed-
ings of Designing Privacy Enhancing Technologies: Workshop on Design Issues in
Anonymity and Unobservability, pages 46–66, July 2000.

6. Roger Dingledine and Nick Mathewson. Tor protocol specification.
http://tor.eff.org/svn/trunk/doc/spec/tor-spec.txt, February 2007.

7. Roger Dingledine, Nick Mathewson, and Paul Syverson. Tor: The second-
generation onion router. In Proceedings of the 13th USENIX Security Symposium,
August 2004.

8. Tahir ElGamal. A public key cryptosystem and a signature scheme based on
discrete logarithms. IEEE Trans. on Information Theory, 31(4):469–472, July
1985.

9. Ian Goldberg. On the security of the Tor authentication protocol. In Proceedings of
the Sixth Workshop on Privacy Enhancing Technologies (PET 2006), Cambridge,
UK, June 2006. Springer.

10. David M. Goldschlag, Michael G. Reed, and Paul F. Syverson. Hiding Routing
Information. In R. Anderson, editor, Proceedings of Information Hiding: First
International Workshop, pages 137–150. Springer-Verlag, LNCS 1174, May 1996.

11. Onion Routing: Brief Selected History. http://www.onion-router.net/history.html.
12. IEEE. P1363 standard specifications for public-key cryptography. IEEE Std 1363-

2000, January 2000.
13. Aniket Kate, Greg Zaverucha, and Ian Goldberg. Pairing-based onion routing. In

Proceedings of the Seventth Workshop on Privacy Enhancing Technologies (PET
2007). (This proceedings.). Springer-Verlag, LNCS, 2007. Also University of Wa-
terloo, Tech. Report CACR 2007-08.

14. Alfred J. Manezes, Minqhua Qu, and Scott A. Vanstone. Some new key agreement
protocols providing implicit authentication. In Workshop in Selected Areas of
Cryptography (SAC’95), pages 22–32, 1995.



15. Alfred J. Menezes, Paul C. van Oorschot, and Scott A. Vanstone. Handbook of
Applied Cryptography. CRC Press, 1997.

16. Steven J. Murdoch. Hot or not: Revealing hidden services by their clock skew.
In Proceedings of the 13th ACM Conference on Computer and Communications
Security (CCS 2006), pages 27–36. ACM Press, November 2006.

17. Lasse Øverlier and Paul Syverson. Locating hidden servers. In Proceedings of the
2006 IEEE Symposium on Security and Privacy. IEEE CS, May 2006.

18. Lasse Øverlier and Paul Syverson. Valet services: Improving hidden servers with
a personal touch. In Proceedings of the Sixth Workshop on Privacy Enhancing
Technologies (PET 2006), Cambridge, UK, June 2006. Springer.

19. Michael G. Reed, Paul F. Syverson, and David M. Goldschlag. Proxies for Anony-
mous Routing. In Proceedings of the 12th Annual Computer Security Applications
Conference, pages 95–104. IEEE CS Press, December 1996.

20. Michael G. Reed, Paul F. Syverson, and David M. Goldschlag. Anonymous con-
nections and onion routing. IEEE Journal on Selected Areas in Communications,
16(4):482–494, May 1998.

21. Relakks. http://www.relakks.com/.


	Improving efficiency and simplicity of Tor circuit establishment and hidden services
	Lasse Øverlier (Norwegian Defence Research Establishment and Gjøvik University College), Paul Syverson (Naval Research Laboratory)



